Burden of different beta-lactamase classes among clinical isolates of AmpC-producing Pseudomonas aeruginosa in burn patients: A prospective study

Indian J Crit Care Med. 2012 Jul;16(3):136-40. doi: 10.4103/0972-5229.102077.

Abstract

Background: Pseudomonas aeruginosa is one of the most common pathogens causing infections in burns, and shows increasing resistance to β-lactam antibiotics by producing different classes of beta-lactamases. It is also not unusual to find a single isolate that expresses multiple β-lactamase enzymes, further complicating the treatment options. Thus, in this study, we aimed to determine the coexistence of different beta-lactamase enzymes in clinical isolates of P. aeruginosa in the burn ward.

Materials and methods: A total of 101 clinical isolates of P. aeruginosa from the burn ward were identified and tested for the presence of different beta-lactamase enzymes (extended spectrum beta lactamase (ESBL), Amp C and metallo β-lactamases (MBL) from October 2006 to May 2009. In vitro susceptibility pattern of antipseudomonal antibiotics was done by the Kirby Bauer disc diffusion method.

Results: A total of 33 (32.7%) isolates were confirmed to be positive for AmpC beta-lactamase. Co-production of AmpC along with ESBL and MBL was reported in 24.5% and 45.5% isolates, respectively. A total of 12 (11.9%) isolates were resistant to three or more antibiotic classes (multidrug resistance). Imipenem and piperacillin/tazobactum showed high sensitivity, with 86.1% and 82.2%, respectively.

Conclusion: This study reveals the high prevalence of multidrug- resistant P. aeruginosa producing beta-lactamase enzymes of different mechanisms in this region from burn patients. The emerging antimicrobial resistance in burn wound pathogens poses serious therapeutic challenge. Thus proper antibiotic policy and measures to restrict the indiscriminate use of cephalosporins and carbapenems should be taken to minimize the emergence of this multiple beta -lactamase producing pathogen.

Keywords: AmpC; Pseudomonas aeruginosa; extended-spectrum beta lactamase; metallo β-lactamases.