Enantioselective gold-catalysis is emerging as a powerful tool in organic synthesis for the stereoselective manipulation of unfunctionalized unsaturated hydrocarbons. Despite the exponential growth, the molecular complexity of common chiral gold complexes generally prevents a complete description of the mechanism steps and activation modes being documented. In this study, we present the results of a combined experimental-computational (DFT) investigation of the mechanism of the enantioselective gold-catalyzed allylic alkylation of indoles with alcohols. A stepwise S(N)2'-process (i.e. anti-auroindolination of the olefin, proton-transfer, and subsequent anti-elimination [Au]-OH) is disclosed, leading to a library of tricyclic-fused indole derivatives. The pivotal role played by the gold counterion, in terms of molecular arrangement (i.e. "folding effect") and proton-shuttling in restoring the catalytic species, is finally documented.