Background & aims: Cholangiocyte proliferation plays a role in the progression of cholangiopathies, in particular in primary sclerosing cholangitis. The mechanisms regulating cholangiocyte proliferation are still undefined. Pancreatic Duodenal Homeobox protein 1 (PDX-1) is expressed by reactive cholangiocytes. In the adult pancreas, PDX-1 regulates the proliferative response to injury of ductal cells. Its effects can be counteracted by Hairy and enhancer of split 1 (Hes-1). We aimed at studying whether PDX-1/Hes-1 interactions regulate cholangiocyte proliferation in response to injury.
Methods: The effect of the loss of PDX-1 on cholangiocyte proliferation was studied in vitro. In vivo PDX-1-heterozygous (+/-) mice were subjected to either DDC feeding (a model of sclerosing cholangitis) or to bile duct ligation (BDL). PDX-1/Hes-1 interactions on cell proliferation were determined by exposure to All-trans Retinoic Acid (At-RA), an inductor of Hes-1.
Results: In vitro, cholangiocyte proliferation was undetectable in cells pre-treated with PDX-1 siRNA. In vivo, increases in bile duct mass and collagen deposition observed after DDC feeding or BDL were significantly reduced in PDX-1(+/-) mice. Hes-1 expression is reduced in proliferating cholangiocytes; At-RA induced a dose-dependent increase in Hes-1 and a decrease in PDX-1 expression. At-RA neutralized the increases in PDX-1 expression and cell proliferation, both in vitro and in vivo in DDC mice. PDX-1 is overexpressed and Hes-1 downregulated in cholangiocytes isolated from PSC livers.
Conclusions: Hes-1 downregulation allows PDX-1 to act as a major determinant of cholangiocyte proliferation in response to cholestatic injury. These findings provide novel mechanistic insights into the pathophysiology of cholangiopathies.
Copyright © 2012 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.