Paralogs for several proteins implicated in neurodegenerative disorders have been identified and explored to further facilitate the identification of molecular mechanisms contributing to disease pathogenesis. For the disease-causing protein in spinocerebellar ataxia type 2, ataxin-2, a paralog of unknown function, termed ataxin-2-like, has been described. We discovered that ataxin-2-like associates with known interaction partners of ataxin-2, the RNA helicase DDX6 and the poly(A)-binding protein, and with ataxin-2 itself. Furthermore, we found that ataxin-2-like is a component of stress granules. Interestingly, sole ataxin-2-like overexpression led to the induction of stress granules, while a reduction of stress granules was detected in case of a low ataxin-2-like level. Finally, we observed that overexpression of ataxin-2-like as well as its reduction has an impact on the presence of microscopically visible processing bodies. Thus, our results imply a functional overlap between ataxin-2-like and ataxin-2, and further indicate a role for ataxin-2-like in the regulation of stress granules and processing bodies.