Three potentially toxic elements [chromium (Cr), lead (Pb), and cadmium (Cd)] were tested to assess their effects on two soils of different properties and origin. The soils were a granitic soil (Haplic Arenosol), which meets the requirements of OECD ecotoxicity testing, and a calcareous soil (Calcaric Regosol) with properties often found in the Mediterranean areas. The metal concentrations used ranged from 0.001 to 5,000 mg kg(-1) soil. The effects on soil microbial activity and community composition (respirometry and polymerase chain reaction-denaturing gradient gel electrophoresis analysis), as well as the effects on plant germination and elongation (Lactuca sativa), were assessed. The toxicity of the soil water extracts was also evaluated by the growth inhibition of algal populations (Pseudokirschneriella subcapitata). Cr showed the highest level of toxicity to soil organisms in the assays performed because this element remains in soil as anionic form and is less retained by the soil solid matrix than Cd and Pb. The lowest observed-adverse effect level for Cr ranged from approximately 0.1 mg kg(-1) [substrate induced respiration (SIR) test for the granitic soil] to 10 mg kg(-1) (basal respiration and SIR tests for the calcareous soil). For Pb (SIR) and Cd (SIR and alga tests), these levels were approximately 100 mg kg(-1). Germination and algal tests showed higher sensitivity in Regosol soil than in Arenosol soil for Cr due to differences in the bioavailability between the soils. In the cases or areas where alkaline soils are abundant, these should also be considered in laboratory ecotoxicity testing to avoid underestimation of ecotoxicological risks.