We study vibrational excitations, dissociation, and ionization of H(2)(+) in few-cycle laser pulses over a broad wavelength regime. Our results of numerical simulations supported by model calculations show a many orders-of-magnitude enhancement of vibrational excitation and dissociation (over ionization) of the molecular ion at infrared wavelengths. The enhancement occurs without any chirping of the pulse, which was previously applied to take account of the anharmonicity of the molecular vibrations. The effect is related to strong-field two- and higher-order photon transitions between different vibrational states.