Obese postmenopausal women have increased risk of breast cancers with poorer clinical outcomes than their lean counterparts. However, the mechanisms underlying these associations are poorly understood. Rodent model studies have recently identified a period of vulnerability for mammary cancer promotion, which emerges during weight gain after the loss of ovarian function (surgical ovariectomy; OVX). Thus, a period of transient weight gain may provide a life cycle-specific opportunity to prevent or treat postmenopausal breast cancer. We hypothesized that a combination of impaired metabolic regulation in obese animals prior to OVX plus an OVX-induced positive energy imbalance might cooperate to drive tumor growth and progression. To determine if lean and obese rodents differ in their metabolic response to OVX-induced weight gain, and whether this difference affects later mammary tumor metabolism, we performed a nutrient tracer study during the menopausal window of vulnerability. Lean animals preferentially deposited excess nutrients to mammary and peripheral tissues rather than to the adjacent tumors. Conversely, obese animals deposited excess nutrients into the tumors themselves. Notably, tumors from obese animals also displayed increased expression of the progesterone receptor (PR). Elevated PR expression positively correlated with tumor expression of glycolytic and lipogenic enzymes, glucose uptake, and proliferation markers. Treatment with the antidiabetic drug metformin during ovariectomy-induced weight gain caused tumor regression and downregulation of PR expression in tumors. Clinically, expression array analysis of breast tumors from postmenopausal women revealed that PR expression correlated with a similar pattern of metabolic upregulation, supporting the notion that PR+ tumors have enhanced metabolic capacity after menopause. Our findings have potential explanative power in understanding why obese, postmenopausal women display an increased risk of breast cancer.