Accumulating evidence suggests that microRNAs (miRNAs) are over- or under-expressed in tumors, and abnormalities in miRNA expression may contribute to carcinogenesis. MiR-383 was previously identified as one of the under-expressed miRNAs in medulloblastoma (MB) by miRNA expression profiling. Quantitative reverse transcription polymerase chain reaction (RT-PCR)-based miRNA assays showed an enrichment of miR-383 in normal brain. Based on these data, we speculated that miR-383 is important in MB pathogenesis. In this study, we demonstrated significant downregulation of miR-383 in 23/29 (79%) MB samples and 7/7 (100%) MB cells lines. Ectopic expression of miR-383 in MB cells led to suppression of cell growth, cell accumulation at sub-G1 phase and alteration of apoptosis-related proteins. By transcriptomic analysis and computational algorithms, we identified peroxiredoxin 3 (PRDX3) as a target gene of miR-383. Luciferase reporter assay confirmed that miR-383 negatively regulated PRDX3 by interaction between miR-383 and complementary sequences in the 3' UTR of PRDX3. MiR-383 repressed PRDX3 at transcriptional and translational levels as revealed by quantitative RT-PCR and Western blot analysis. Furthermore, depletion of PRDX3 by siRNAs resulted in similar effects as observed in miR-383-transfected cells. In conclusion, miR-383 acts as a regulator controlling cell growth of MB, at least in part, through targeting PRDX3.
© 2012 International Society of Neuropathology.