Transcriptional enhancement of X-linked genes to compensate for the sex chromosome monosomy in Drosophila males is brought about by a ribonucleoprotein assembly called Male-Specific-Lethal or Dosage Compensation Complex (MSL-DCC). This machinery is formed in male flies and specifically associates with active genes on the X chromosome. After assembly at dedicated high-affinity "entry" sites (HAS) on the X chromosome, the complex distributes to the nearby active chromatin. High-resolution, genome-wide mapping of the MSL-DCC subunits by chromatin immunoprecipitation (ChIP) on oligonucleotide tiling arrays suggests a rather homogenous spreading of the intact complex onto transcribed chromatin. Coupling ChIP to deep sequencing (ChIP-seq) promises to map the chromosomal interactions of the DCC with improved resolution. We present ChIP-seq binding profiles for all complex subunits, including the first description of the RNA helicase MLE binding pattern. Exploiting the preferential representation of direct chromatin contacts upon high-energy shearing, we report a surprising functional and topological separation of MSL protein contacts at three classes of chromosomal binding sites. Furthermore, precise determination of DNA fragment lengths by paired-end ChIP-seq allows decrypting of the local complex architecture. Primary contacts of MSL-2 and MLE define HAS for the DCC. In contrast, association of the DCC with actively transcribed gene bodies is mediated by MSL-3 binding to nucleosomes. We identify robust MSL-1/MOF binding at a fraction of active promoters genome-wide. Correlation analyses suggest that this association reflects a function outside dosage compensation. Our comprehensive analysis provides a new level of information on different interaction modes of a multiprotein complex at distinct regions within the genome.