Objectives: The aim of this study was to investigate the anatomic distribution of critical sources in patients with atrial fibrillation (AF) by fusion of biatrial computed tomography (CT) images with cycle length (CL) and wave similarity (WS) maps.
Background: Experimental and clinical studies show that atrial fibrillation (AF) may originate from rapid and repetitive (RR) sources of activation. Localization of RR sources may be crucial for an effective ablation treatment. Atrial electrograms showing rapid and repetitive activations can be identified by combining WS and CL analysis.
Methods: Patients with persistent AF underwent biatrial electroanatomic mapping and pre-procedural CT cardiac imaging. WS and CL maps were constructed in 17 patients by calculating the degree of repetitiveness of activation waveforms (similarity index [S]) and the cycle length at each atrial site. WS/CL maps were then integrated with biatrial 3-dimensional CT reconstructions by a stochastic approach.
Results: Repetitive sources of activation (S ≥ 0.5) were present in most patients with persistent AF (94%) and were mainly located at the pulmonary veins (82% of patients), at the superior caval vein (41%), on the anterior wall of the right atrium (23%), and at the left atrial appendage (23%). Potential driver sources showing both rapid and repetitive activations (CL = 140.7 ± 25.1 ms, S = 0.65 ± 0.15) were present only in a subset of patients (65%) and were confined to the pulmonary vein region (47% of patients) and left atrial appendage (12%). Differently, the repetitive activity of the superior caval vein was characterized by a slow activation rate (CL = 184.7 ± 14.6 ms).
Conclusions: The identification and localization of RR sources is feasible by fusion of biatrial anatomic images with WS/CL maps. Potential driver sources are present only in a subset of patients with persistent AF and are mainly located in the pulmonary vein region.
Copyright © 2012 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.