Objective: To study the characteristics of cationic polymers polyethylenimine-β-cyclodextrin (PEI-CyD), polyethylenimine-poly-(3-hydroxypropyl)-aspartamide (PEI-PHPA), N,N-Dimethyldipropylenetriamine-Bis(3-aminopropyl)amine-aspartamide (PEE-PHPA) in vitro and in vivo.
Methods: PEI-PHPA, PEI-CyD and PEE-PHPA were synthesized and the chemistry structure of PEI-PHPA, PEI-CyD and PEE-PHPA was confirmed by (1)H-NMR. The particle size and zeta potential of these polymers were measured, and capacity of plasmid DNA condensation was tested. The inhibition of COS-7, A549, HEK293 and C6 cells was measured by MTT assay. The transfection efficiency was determined in HEK293 cell lines. The toxicity, tissue distribution and transfection efficiency of cationic polymers were tested in vivo.
Results: When the N/P of polymers/DNA at 30, the particle sizes were close 250 nm and the zeta-potential were near 35 mv. They were able to condense DNA at N/P ratio < 5. The MTT assay showed that the IC(50) of PEE-PHPA was 21.5, 20.2, 7.30 and 37.1 μg/ml, and that of PEI25kD was 15.8, 18.3, 11.4 and 36.7 μg/ml in C6, COS-7, A549 and HEK293cell lines, respectively. The cell viability of PEI-CyD and PEI-PHPA in above cell lines was over 60%. They had high transfection efficiency in HEK293 cell lines. The LD(50) of PEI25Kd, PEI-CyD, PEI-PHPA and PEE-PHPA in vivo was 19.50, 100.4, 521.2 and 630.0, respectively by intraperitoneal (ip) injection. The contractions of these polymers were higher in kidney than in other organs and tissues.PEE-PHPA had slight effect on kidney and liver function.
Conclusion: PEE and PEI25kD have higher transfection efficiency and higher toxicity; while PC and PHPA-PEI have lower toxicity and higher transfection efficiency to be used as non-viral gene vector.