Objective: Apolipoprotein (apo) A-II is the second major apo of high-density lipoproteins, yet its pathophysiological roles in the development of atherosclerosis remain unknown. We aimed to examine whether apo A-II plays any role in atherogenesis and, if so, to elucidate the mechanism involved.
Methods and results: We compared the susceptibility of human apo A-II transgenic (Tg) rabbits to cholesterol diet-induced atherosclerosis with non-Tg littermate rabbits. Tg rabbits developed significantly less aortic and coronary atherosclerosis than their non-Tg littermates, while total plasma cholesterol levels were similar. Atherosclerotic lesions of Tg rabbits were characterized by reduced macrophages and smooth muscle cells, and apo A-II immunoreactive proteins were frequently detected in the lesions. Tg rabbits exhibited low levels of plasma C-reactive protein and blood leukocytes compared with non-Tg rabbits, and high-density lipoproteins of Tg rabbit plasma exerted stronger cholesterol efflux activity and inhibitory effects on the inflammatory cytokine expression by macrophages in vitro than high-density lipoproteins isolated from non-Tg rabbits. In addition, β-very-low-density lipoproteins of Tg rabbits were less sensitive to copper-induced oxidation than β-very-low-density lipoproteins of non-Tg rabbits.
Conclusions: These results suggest that enrichment of apo A-II in high-density lipoprotein particles has atheroprotective effects and apo A-II may become a target for the treatment of atherosclerosis.