Studying the role of the immune system on the antitumor activity of a Hedgehog inhibitor against murine osteosarcoma

Oncoimmunology. 2012 Nov 1;1(8):1313-1322. doi: 10.4161/onci.21680.

Abstract

Recent evidence demonstrates that the efficacy of conventional anticancer therapies including chemotherapy requires a functional immune system. Here, we addressed the possibility that the antitumor effect of a selective Smoothened antagonist and Hedgehog (Hh) pathway inhibitor (LDE225), a promising anticancer drug, might at least partially depend on the immune system. To this aim, we used tumor cell lines derived from a murine model of radiation-induced osteosarcoma. In vitro treatment of osteosarcoma cells with LDE225 resulted in a decreased ability of tumor cells to proliferate, but had no effect on their viability. Flow cytometry analysis demonstrated that LDE225-treatment did not detectably modulate the immunogenicity of tumor cells. Moreover, LDE225 did not display any pro-apoptotic properties on osteosarcoma cells, highlighting that its antitumor profile mainly derives from a cytostatic effect. Furthermore, calreticulin exposure, a key feature of immunogenic cell death, was not provoked by LDE225, neither alone nor combined with recognized immunogenic drugs. Finally, the oral administration of LDE225 to osteosarcoma-bearing mice did significantly delay the tumor growth even in an immunocompromised setting. These data suggest that inhibiting Hh signaling can control osteosarcoma cell proliferation but does not modulate the immunogenic profile of these cells.

Publication types

  • Research Support, Non-U.S. Gov't