Curcumin, or diferuloylmethane, is a major chemical component of turmeric (Curcuma longa Linn.) that has been consumed as a dietary spice through the ages. This yellow-colored polyphenol has a notably wide range of beneficial properties, including anti-inflammatory, antioxidant, antitumoral, anti-invasive and anti-metastatic activity. In the present study, microarray gene expression analysis was applied to identify the curcumin-regulated genes in a highly invasive human breast carcinoma cell line (MDA-MB 231). Cells were cultured with curcumin (20 μM) for 24 h; total RNA was isolated and hybridized to Whole Human Genome Microarray slides. Gene set enrichment analyses on our whole genome expression data revealed downregulation of the EGF pathway elements following curcumin treatment. Furthermore, gene network analysis identified a significantly relevant network among the differentially expressed genes, centered on the EGR1 and FOS genes. The members of these pathways and networks play an essential role in the regulation of cancer cell growth and development; the majority exhibited decreased expression levels following treatment with curcumin. These observations suggest that curcumin is an excellent candidate for the prevention and treatment of breast cancer.