Polysome and messenger ribonucleoprotein (mRNP) preparations from various mammalian cells contain tightly bound nuclease activity that causes degradation of the mRNA in the preparations. This activity was found to cosediment with all polysome size classes as well as with free mRNPs and to remain associated with the mRNPs released from polysomes by treatment with EDTA. No association with ribosomal subunits was evident. The rates of mRNA degradation were not affected by serial dilution, an indication that enzyme and substrate are tightly associated. beta-Globin mRNA in purified reticulocyte polysomes was cleaved at AU sequences in the 3'-terminal region. Cleavages at the same sites occurred when deproteinized reticulocyte RNA was incubated with mouse sarcoma 180 (S-180) polysomes. The S-180 preparations caused additional cleavages, primarily at UG sequences. A P40 mRNA in S-180 polysomes was cleaved primarily in the 3' noncoding region, but the cleavages in a P21 mRNA were seen in the 5' noncoding region only. Actin mRNA was cleaved in an internal region, yielding large relatively stable 3'- and 5'-terminal fragments. These data suggest the occurrence of highly specific interactions between one or more mRNA-bound nucleases and individual mRNA species.