Purpose: We examined changes of the central nervous system in patients with advanced primary open-angle glaucoma (POAG).
Methods: The clinical observational study included 15 patients with bilateral advanced POAG and 15 healthy normal control subjects, matched for age and sex with the study group. Retinal nerve fiber layer (RNFL) thickness was measured by optical coherence tomography (OCT). Using a 3-dimensional magnetization-prepared rapid gradient-echo sequence (3D-MP-RAGE) of magnetic resonance imaging (MRI) and optimized voxel-based morphometry (VBM), we measured the cross-sectional area of the optic nerve and optic chiasm, and the gray matter volume of the brain.
Results: Patients in the POAG group compared to the subjects in the control group showed a significant (P < 0.001) decrease in the bilateral gray-matter volume in the lingual gyrus, calcarine gyrus, postcentral gyrus, superior frontal gyrus, inferior frontal gyrus, and rolandic operculum, as well as in the right cuneus, right inferior occipital gyrus, left paracentral lobule, and right supramarginal gyrus. Patients in the study group showed a significant increase in the bilateral gray matter volume in the middle temporal gyrus, inferior parietal gyrus, and angular gyrus, and in the left gray matter volume in the superior parietal gyrus, precuneus, and middle occipital gyrus. In addition, the cross-sectional area of the optic nerve and optic chiasm, and RNFL thickness were significantly decreased in the POAG group.
Conclusions: In patients with POAG, three-dimensional MRI revealed widespread abnormalities in the central nervous system beyond the visual cortex.