The mechanisms that sustain stem cells are fundamental to tissue maintenance. Here, we identify "cell islands" (CIs) as a niche for putative germ and somatic stem cells in Botryllus schlosseri, a colonial chordate that undergoes weekly cycles of death and regeneration. Cells within CIs express markers associated with germ and somatic stem cells and gene products that implicate CIs as signaling centers for stem cells. Transplantation of CIs induced long-term germline and somatic chimerism, demonstrating self-renewal and pluripotency of CI cells. Cell labeling and in vivo time-lapse imaging of CI cells reveal waves of migrations from degrading CIs into developing buds, contributing to soma and germline development. Knockdown of cadherin, which is highly expressed within CIs, elicited the migration of CI cells to circulation. Piwi knockdown resulted in regeneration arrest. We suggest that repeated trafficking of stem cells allows them to escape constraints imposed by the niche, enabling self-preservation throughout life.
Copyright © 2013 Elsevier Inc. All rights reserved.