Background: The liver has long been recognized as having tolerogenic properties. We investigated whether recombinant adenoassociated virus (rAAV)-mediated expression of donor major histocompatibility complex in recipient livers could induce tolerance to donor-strain grafts.
Methods: Naive B10.BR (H-2) or B10.BR recipients primed with a H-2K-expressing (K) skin graft were injected with rAAV-expressing H-2K (rAAV-K) to induce K expression on hepatocytes 7 days before challenge with a K skin graft. K-specific responses were measured by interferon (IFN)-γ ELISpot and flow cytometric assessment of directly H-2K reactive cells. Fully allogeneic grafts from C57BL/6 (H-2) donors were transplanted onto longstanding B10.BR recipients of K skin to test for linked epitope suppression.
Results: rAAV-K-treated B10.BR mice accepted K skin grafts with increased median survival time (MST) more than 169 days compared to uninoculated (MST=18.5 days) and rAAV-K-treated controls (MST=19 days). rAAV-K-treated B10.BR animals primed with K skin grafts also accepted secondary K skin grafts in the long term (MST>100 days) compared to accelerated rejection in primed, uninoculated mice (MST=12 days). Treatments did not induce liver pathology, assessed by serum alanine aminotransferase levels and histology. IFN-γ ELISpot analysis of splenocytes from rAAV-K-treated mice indicated reduced responses to donor K antigen, but protection was not extended to fully allogeneic C57BL/6 skin or heart grafts, even in recipients that had accepted K skin grafts in the long term.
Conclusions: High-level expression of donor major histocompatibility complex in recipient livers promotes tolerance to skin allografts, even in animals primed to produce a memory response. This provides proof of concept for an approach using liver-targeted gene delivery for tolerance induction to donor antigen.