Segmentation of the influenza A virus (IAV) genome enables rapid gene reassortment at the cost of complicating the task of assembling the full viral genome. By simultaneously probing for the expression of multiple viral proteins in MDCK cells infected at a low multiplicity with IAV, we observe that the majority of infected cells lack detectable expression of one or more essential viral proteins. Consistent with this observation, up to 90% of IAV-infected cells fail to release infectious progeny, indicating that many IAV virions scored as noninfectious by traditional infectivity assays are capable of single-round infection. This fraction was not significantly affected by target or producer cell type but varied widely between different IAV strains. These data indicate that IAV exists primarily as a swarm of complementation-dependent semi-infectious virions, and thus traditional, propagation-dependent assays of infectivity may drastically misrepresent the true infectious potential of a virus population.