Recently it has become clear that exposure to xenobiotics may result in various forms of cell death; not only passive cell deaths like necrosis, or programmed cell deaths such as apoptosis, but also regulated necrosis, autophagy, senescence, or mitotic catastrophe. Complex cell signaling networks influence the processing of cell death. Furthermore, recent research has revealed early complex molecular interactions between organelles prior to the final triggering of cell death. The plasma membrane may play an important role in the early cell death signaling events. Regarding this latter aspect, drugs and environmental pollutants have been reported to affect plasma membrane characteristics which may further affect cell fate. Changes in membrane fluidity or in composition and function of specialized membrane microdomains (plasma membrane remodeling) have been proven to be involved in the regulation of many important physiological signaling pathways, including cell death. Furthermore, it has been suggested that a crosstalk between chemical-induced cellular membrane effects and other organelles may be of vital importance to explain the final outcome of chemical exposure. Here, we review the effects of plasma membrane remodeling on cell survival and cell death; we describe how the cell signaling pathways activated by changes in plasma membrane characteristics may influence cell fate. Since plasma membrane function plays an important role in the regulation of a number of cellular responses, it has been implicated in the development or progress of several diseases. A better knowledge of the effects of various chemicals on plasma membrane remodeling may be important for understanding the pathogenesis of major diseases, and may assist in developing new therapeutic strategies.
Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.