This paper presents a system capable of simultaneous high-power and high-data-rate transmission through solid metal barriers using ultrasound. By coaxially aligning a pair of piezoelectric transducers on opposite sides of a metal wall and acoustically coupling them to the barrier, an acoustic- electric transmission channel is formed which prevents the need for physical penetration. Independent data and power channels are utilized, but they are only separated by 25.4 mm to reduce the system's form factor. Commercial off-the-shelf components and evaluation boards are used to create realtime prototype hardware and the full system is capable of transmitting data at 17.37 Mbps and delivering 50 W of power through a 63.5-mm thick steel wall. A synchronous multi-carrier communication scheme (OFDM) is used to achieve a very high spectral efficiency and to ensure that there is only minor interference between the power and data channels. Also presented is a discussion of potential enhancements that could be made to greatly improve the power and data-rate capabilities of the system. This system could have a tremendous impact on improving safety and preserving structural integrity in many military applications (submarines, surface ships, unmanned undersea vehicles, armored vehicles, planes, etc.) as well as in a wide range of commercial, industrial, and nuclear systems.