Highly twisted double-helix carbon nanotube yarns

ACS Nano. 2013 Feb 26;7(2):1446-53. doi: 10.1021/nn305209h. Epub 2013 Jan 4.

Abstract

The strength and flexibility of carbon nanotubes (CNTs) allow them to be constructed into a variety of innovated architectures with fascinating properties. Here, we show that CNTs can be made into a highly twisted yarn-derived double-helix structure by a conventional twist-spinning process. The double-helix is a stable and hierarchical configuration consisting of two single-helical yarn segments, with controlled pitch and unique mechanical properties. While one of the yarn components breaks early under tension due to the highly twisted state, the second yarn produces much larger tensile strain and significantly prolongs the process until ultimate fracture. In addition, these elastic and conductive double-helix yarns show simultaneous and reversible resistance change in response to a wide range of input sources (mechanical, photo, and thermal) such as applied strains or stresses, light illumination, and environmental temperature. Our results indicate that it is possible to create higher-level, more complex architectures from CNT yarns and fabricate multifunctional nanomaterials with potential applications in many areas.

Publication types

  • Research Support, Non-U.S. Gov't