The Epstein-Barr virus (EBV) envelope glycoprotein 350/220 (gp350/220) is the most abundant molecule on the viral surface and it is responsible for the initial viral attachment to cell surface of the host. As many other viral envelope proteins, it is highly glycosylated, not least with O-linked glycans, most of which essential for EBV life cycle. EBV gp350/220 is also a primary target for neutralizing antibodies in the human hosts and a promising candidate for an EBV vaccine. Here we showed that recombinant GalNAc transferases can glycosylate scan peptides of the EBV gp350/220 envelope protein immobilized on microarray glass slides. We also identified serum IgG antibodies to a selection of peptides and O-glycopeptides, whereas sera from EBV-IgG negative individuals remained negative. We here describe novel glycopeptide epitopes present within immunodominant stretches of EBV gp350/220 and demonstrate a remarkable variability between individual samples with respect to their reactivity patterns to peptides and glycopeptides. The study provides additional insights into the complex B-cell response towards the EBV gp350/220 envelope protein, which may have implications for diagnostic and vaccine developments.