Modeling the habitat retreat of the rediscovered endemic Hawaiian moth Omiodes continuatalis Wallengren (Lepidoptera: Crambidae)

PLoS One. 2013;8(1):e51885. doi: 10.1371/journal.pone.0051885. Epub 2013 Jan 2.

Abstract

Survey data over the last 100 years indicate that populations of the endemic Hawaiian leafroller moth, Omiodes continuatalis (Wallengren) (Lepidoptera: Crambidae), have declined, and the species is extirpated from large portions of its original range. Declines have been attributed largely to the invasion of non-native parasitoid species into Hawaiian ecosystems. To quantify changes in O. continuatalis distribution, we applied the maximum entropy modeling approach using Maxent. The model referenced historical (1892-1967) and current (2004-2008) survey data, to create predictive habitat suitability maps which illustrate the probability of occurrence of O. continuatalis based on historical data as contrasted with recent survey results. Probability of occurrence is predicted based on the association of biotic (vegetation) and abiotic (proxy of precipitation, proxy of temperature, elevation) environmental factors with 141 recent and historic survey locations, 38 of which O. continuatalis were collected from. Models built from the historical and recent surveys suggest habitat suitable for O. continuatalis has changed significantly over time, decreasing both in quantity and quality. We reference these data to examine the potential effects of non-native parasitoids as a factor in changing habitat suitability and range contraction for O. continuatalis. Synthesis and applications: Our results suggest that the range of O. continuatalis, an endemic Hawaiian species of conservation concern, has shrunk as its environment has degraded. Although few range shifts have been previously demonstrated in insects, such contractions caused by pressure from introduced species may be important factors in insect extinctions.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms
  • Animals
  • Conservation of Natural Resources*
  • Ecology / methods
  • Ecosystem*
  • Environment
  • Geography
  • Hawaii
  • Lepidoptera* / parasitology
  • Models, Biological
  • Parasites
  • Probability
  • Software

Grants and funding

This research was funded by a USDA Cooperative State Research, Education and Extension (CSREES) Special Research Grant Tropical and Subtropical Agricultural Research (USDA CSREES Award #2004-34135-14998), as well as USDA-NIFA Agreement No. 58-5320-9-430, and Hatch projects HAW00942-H and HAW00956-H, administered by the College of Tropical Agriculture and Human Resources. Additional funding was provided by the University of Hawaii Manoa Ecology, Evolution and Conservation Biology program (NSF grant #DGE02-32016), and the NSF Graduate Research Fellowship Program. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.