Integrins are receptors of the extracellular matrix (ECM), playing a vital role in pathophysiological processes. They bind to ECM ligands like collagens and can mediate wound healing as well as tumor metastasis and thrombosis, thus being a part of cell adhesion and migration as well as platelet aggregation. For this reason, identifying α2β1 integrin-specific antagonists can assist in the development of drugs to treat tumor progression, angiogenesis, and cardiovascular diseases. Snake venoms have been shown to contain antagonists which target collagen-binding integrins. EMS16, rhodocetin, and VP12 are three toxins belonging to the C-type lectin-related protein family and have been proven to inhibit the α2β1 integrin, specifically the α2 integrin A domain. To specifically isolate antagonists targeting the α2β1 integrin A domain, we developed a protocol based on affinity chromatography. Using this novel approach, the toxin VP-i was isolated from Vipera palaestinae venom. We show that VP-i binds to the α2 integrin A domain and that it successfully inhibits adhesion of various cells to type I collagen as well as cell migration. Moreover, our results indicate that VP-i differs structurally from the previously purified VP12, although not functionally, and therefore is a further venom compound which can be utilized for drug development.
Copyright © 2013 Elsevier Ltd. All rights reserved.