How do mammalian transposons induce genetic variation? A conceptual framework: the age, structure, allele frequency, and genome context of transposable elements may define their wide-ranging biological impacts

Bioessays. 2013 Apr;35(4):397-407. doi: 10.1002/bies.201200133. Epub 2013 Jan 14.

Abstract

In this essay, we discuss new insights into the wide-ranging impacts of mammalian transposable elements (TE) on gene expression and function. Nearly half of each mammalian genome is comprised of these mobile, repetitive elements. While most TEs are ancient relics, certain classes can move from one chromosomal location to another even now. Indeed, striking recent data show that extensive transposition occurs not only in the germline over evolutionary time, but also in developing somatic tissues and particular human cancers. While occasional germline TE insertions may contribute to genetic variation, many other, similar TEs appear to have little or no impact on neighboring genes. However, the effects of somatic insertions on gene expression and function remain almost completely unknown. We present a conceptual framework to understand how the ages, allele frequencies, molecular structures, and especially the genomic context of mammalian TEs each can influence their various possible functional consequences.

MeSH terms

  • Alleles
  • Animals
  • DNA Transposable Elements / genetics*
  • Evolution, Molecular
  • Gene Expression
  • Gene Expression Regulation*
  • Gene Frequency
  • Genetic Variation*
  • Humans
  • Neoplasms / genetics

Substances

  • DNA Transposable Elements