Dithiocarbamate chitosan as a potential polymeric matrix for controlled drug release

Drug Dev Ind Pharm. 2014 Feb;40(2):192-200. doi: 10.3109/03639045.2012.753900. Epub 2013 Jan 16.

Abstract

Objective: To develop a polymer matrix for controlled release of drugs, chitosan, a linear aminopolysaccharide, was chemically modified to dithiocarbamate chitosan (DTCC) to afford a matrix where metal-drug complexes could be attached and released in a controlled manner depending on the binding nature between the drugs and the metals.

Materials and methods: DTCC was treated with metal-tetracycline (Tc) complexes to prepare DTCC-Ca(II)-Tc, DTCC-Mg(II)-Tc, DTCC-Cu(II)-Tc and DTCC-Zn(II)-Tc.

Results: The binding amount of Tc was in the order of DTCC-Zn(II)-Tc ≈ DTCC-Mg(II)-Tc ≈ DTCC-Ca(II)-Tc > DTCC-Cu(II)-Tc. The biphasic binding profiles, where Tc binding increased initially and then decreased, were shown for DTCC-Cu(II)-Tc and DTCC-Zn(II)-Tc. In a flow method, Tc was released slowly from DTCC-metal-Tc complexes except for DTCC-Cu(II)-Tc compared with Tc release from DTCC-Tc. In parallel with the results of the release experiment, DTCC-metal-Tc complexes except for DTCC-Cu(II)-Tc presented a prolonged antibacterial activity in an antibacterial test. The antibacterial activity of DTCC-Ca(II)-, -Mg(II)- and -Zn(II)-Tc complexes lasted for 28-44 days, while free Tc and DTCC-Tc lasted for 7-12 days.

Discussion and conclusion: Taken together, our data suggest that DTCC could be used for a polymeric matrix for controlled release of drugs such as Tc, which possess functional groups for ionic and/or coordinate bond with metals.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / chemistry*
  • Anti-Bacterial Agents / metabolism
  • Chitosan / chemistry*
  • Chitosan / metabolism
  • Delayed-Action Preparations / chemistry
  • Delayed-Action Preparations / metabolism
  • Polymers / chemistry*
  • Polymers / metabolism
  • Thiocarbamates / chemistry*
  • Thiocarbamates / metabolism

Substances

  • Anti-Bacterial Agents
  • Delayed-Action Preparations
  • Polymers
  • Thiocarbamates
  • Chitosan