Introduction: Neural stem cell transplantation is a promising tool for the restoration of the enteric nervous system in a variety of motility disorders. However, limited cell viability after transplantation has restricted its regenerative capacity. The aim of this study was to evaluate the effect of transplantation of neuroepithelial stem cell (NESC) overexpressing anti-apoptotic gene Bcl-2 on the survival, differentiation and function of grafted cells in rat aganglionic colon.
Methods: NESCs were isolated from neural tube of embryonic rat (embryonic day 11.5) and manipulated to overexpress the Bcl-2 gene. After transplantation into the benzalkonium chloride-induced rat aganglionic colon, grafted cells were visualized in colonic sections. Apoptosis and differentiation of the implanted cells were assessed 1, 4 and 8 weeks post transplantation, respectively. Eight weeks post transplantation, neuronal function of the colon was assessed by measuring the response of muscle strips to electrical field stimulation.
Results: Transplantation with Bcl-2-NESCs reduced apoptosis within the transplant at 1 week compared with the vector-NESC grafted group. Our findings also indicated that overexpression of Bcl-2 in the transplanted NESCs enhanced differentiation into PGP9.5-positive and neuronal nitric oxide synthase-positive neurons at 8-week assessment. Moreover, electrical field stimulation-induced relaxation of colonic strips was also significantly increased in the Bcl-2-NESC grafted group.
Conclusion: Transplantation of NESCs genetically modified to overexpress Bcl-2 may have value for enhancing survival and neurogenesis of grafted cells in the adult gut environment and for improving the efficacy of stem cell therapy following a broad range of gastrointestinal motility disorders.