Leishmaniasis causes significant morbidity and mortality worldwide, and no vaccines against this disease are available. Previously, we had shown that the amastigote-specific protein p27 (Ldp27) is a component of an active cytochrome c oxidase complex in Leishmania donovani and that upon deletion of its gene the parasite had reduced virulence in vivo. In this study, we have shown that Ldp27(-/-) parasites do not survive beyond 20 wk in BALB/c mice and hence are safe as an immunogen. Upon virulent challenge, mice 12 wk postimmunization showed significantly lower parasite burden in the liver and spleen. When mice were challenged 20 wk postimmunization, a significant reduction in parasite burden was still noted, suggesting long-term protection by Ldp27(-/-) immunization. Immunization with Ldp27(-/-) induced both pro- and anti-inflammatory cytokine responses and activated splenocytes for enhanced leishmanicidal activity in association with NO production. Protection in both short- and long-term immunized mice after challenge with the wild-type parasite correlated with the stimulation of multifunctional Th1-type CD4 and CD8 T cells. Adoptive transfer of T cells from long-term immunized mice conferred protection against virulent challenge in naive recipient mice, suggesting involvement of memory T cell response in protection against Leishmania infection. Immunization of mice with Ldp27(-/-)also demonstrated cross-protection against Leishmania major and Leishmania braziliensis infection. Our data show that genetically modified live attenuated Ldp27(-/-) parasites are safe, induce protective immunity even in the absence of parasites, and can provide protection against homologous and heterologous Leishmania species.