Background: Cameroon, in west central Africa, has an extraordinary degree of HIV diversity, presenting a major challenge for the development of an effective HIV vaccine. Given the continuing need to closely monitor the emergence of new HIV variants in the country, we analyzed HIV-1 genetic diversity in 59 plasma samples from HIV-infected Cameroonian blood donors. Full length HIV gag and nef sequences were generated and phylogenetic analyses were performed.
Findings: All gag and nef sequences clustered within HIV-1M. Circulating recombinant form CRF02_AG predominated, accounting for 50% of the studied infections, followed by clade G (11%), clade D and CRF37_cpx (4% each), and clades A, F, CRF01_AE and CRF36_cpx (2% each). In addition, 22% of the studied viruses apparently had nef and gag genes from viruses belonging to different clades, with the majority (8/10) having either a nef or gag gene derived from CRF02_AG. Interestingly, five gag sequences (10%) and three (5%) nef sequences were neither obviously recombinant nor easily classifiable into any of the known HIV-1M clades.
Conclusion: This suggests the widespread existence of highly divergent HIV lineages in Cameroon. While the genetic complexity of the Cameroonian HIV-1 epidemic has potentially serious implications for the design of biomedical interventions, detailed analyses of divergent Cameroonian HIV-1M lineages could be crucial for dissecting the earliest evolutionary steps in the emergence of HIV-1M.