Sarcolipin protein interaction with sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) is distinct from phospholamban protein, and only sarcolipin can promote uncoupling of the SERCA pump

J Biol Chem. 2013 Mar 8;288(10):6881-9. doi: 10.1074/jbc.M112.436915. Epub 2013 Jan 22.

Abstract

Sarco(endo)plasmic reticulum Ca(2+)ATPase (SERCA) pump activity is modulated by phospholamban (PLB) and sarcolipin (SLN) in cardiac and skeletal muscle. Recent data suggest that SLN could play a role in muscle thermogenesis by promoting uncoupling of the SERCA pump (Lee, A.G. (2002) Curr. Opin. Struct. Biol. 12, 547-554 and Bal, N. C., Maurya, S. K., Sopariwala, D. H., Sahoo, S. K., Gupta, S. C., Shaikh, S. A., Pant, M., Rowland, L. A., Bombardier, E., Goonasekera, S. A., Tupling, A. R., Molkentin, J. D., and Periasamy, M. (2012) Nat. Med. 18, 1575-1579), but the mechanistic details are unknown. To better define how binding of SLN to SERCA promotes uncoupling of SERCA, we compared SLN and SERCA1 interaction with that of PLB in detail. The homo-bifunctional cross-linker (1,6-bismaleimidohexane) was employed to detect dynamic protein interaction during the SERCA cycle. Our studies reveal that SLN differs significantly from PLB: 1) SLN primarily affects the Vmax of SERCA-mediated Ca(2+) uptake but not the pump affinity for Ca(2+); 2) SLN can bind to SERCA in the presence of high Ca(2+), but PLB can only interact to the ATP-bound Ca(2+)-free E2 state; and 3) unlike PLB, SLN interacts with SERCA throughout the kinetic cycle and promotes uncoupling of the SERCA pump. Using SERCA transmembrane mutants, we additionally show that PLB and SLN can bind to the same groove but interact with a different set of residues on SERCA. These data collectively suggest that SLN is functionally distinct from PLB; its ability to interact with SERCA in the presence of Ca(2+) causes uncoupling of the SERCA pump and increased heat production.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Amino Acid Sequence
  • Animals
  • Calcium / metabolism*
  • Calcium / pharmacology
  • Calcium-Binding Proteins / genetics
  • Calcium-Binding Proteins / metabolism*
  • HEK293 Cells
  • Humans
  • Hydrolysis
  • Immunoblotting
  • Ion Transport
  • Kinetics
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Molecular Sequence Data
  • Muscle Proteins / genetics
  • Muscle Proteins / metabolism*
  • Muscles / metabolism
  • Mutation
  • Protein Binding / drug effects
  • Proteolipids / genetics
  • Proteolipids / metabolism*
  • Rats
  • Sarcoplasmic Reticulum Calcium-Transporting ATPases / genetics
  • Sarcoplasmic Reticulum Calcium-Transporting ATPases / metabolism*
  • Sequence Homology, Amino Acid
  • Thermogenesis / genetics

Substances

  • Calcium-Binding Proteins
  • Muscle Proteins
  • Proteolipids
  • phospholamban
  • sarcolipin
  • Adenosine Triphosphate
  • Sarcoplasmic Reticulum Calcium-Transporting ATPases
  • Calcium