Dengue virus is the most prevalent mosquito-borne virus worldwide. In this study, we used pyrosequencing to analyze the whole viral genome of two mouse-adapted strains, D2S10 and D2S20, that induce a dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS)-like lethal disease in mice lacking the type I and/or type II interferon receptors. Previous experiments with D2S10 indicated that N124D and K128E mutations in the envelope protein were responsible for the severe disease induced in mice compared to its parental strain PL046. Here we demonstrate that D2S20 is more virulent than D2S10 and captured the presence of five key amino acid mutations--T70I, N83D, and K122I in envelope (E), and A62T in nonstructural protein 2A (NS2A) and G605V in nonstructural protein 5 (NS5)--that may account for this. These findings set the foundation for further dissection of the viral determinants responsible for dengue disease manifestations in mouse models.