Background: Cobb measurement of standing radiographs is the standard for clinical assessment of coronal spinal deformity. Angle of trunk inclination (ATI) is an accepted clinical measurement of trunk asymmetry, and has variable reported correlations with Cobb angles. Transverse plane spine deformity is most accurately measured using axial computed tomography. Aaro and Dahlbourn's technique for quantifying apical vertebral rotation with respect to the sagittal plane (RAsag) is commonly reported in the literature. To our knowledge no study has correlated ATI with RAsag. The purpose of this study was to determine the relationship between commonly used measures of trunk and spine deformity.
Methods: Sixteen females that underwent preoperative apical vertebra(e) CT scans were retrospectively studied. Thoracic and thoracolumbar RAsag measurements were date-matched to clinically obtained ATI and Cobb measurements. Two-tailed Pearson correlations were calculated; α = 0.01.
Results: Median patient age was 14.6 years (11-19); BMI 19.4 (16.0-25.5). Curve patterns: Lenke 1 (5); 2 (5); 3 (1); 4 (1); 5 (2): 6 (2). Twenty-six curves (15T; 11TL) with complete, date-matched data points were analyzed. In thoracic curves, ATI correlated with Cobb (r = 0.711, P < 0.004) and RAsag (r = 0.730, P <0.003). ATI was inversely correlated with Cobb flexibility (r = -0.647, P < 0.01). In thoracolumbar curves, ATI correlated with Cobb (r = 0.789, P < 0.005), and RAsag (r = 0.771, P < 0.006) but not Cobb flexibility (r = -0.452, P = 0.190).
Conclusions: Trunk and spine thoracic and thoracolumbar transverse plane deformity are correlated, as are trunk transverse plane and spine coronal plane deformity. Increasing trunk deformity limits thoracic, but not thoracolumbar spine flexibility.