For transdermal drug delivery, we prepared a drug-inorganic nanohybrid (FB-LDH) by intercalating a transdermal model drug, flurbiprofen (FB), into the layered double hydroxides (LDHs) via coprecipitation reaction. The X-ray diffraction patterns and FT-IR spectra of the FB-LDH indicated that the FB molecules were successfully intercalated via electrostatic interaction within the LDH lattices. The in vitro drug release revealed that the Eudragit(®) S-100 in release media could facilitate the drug out-diffusion by effectively replacing the intercalated drug and also enlarging the lattice spacing of the FB-LDH. In this work, a hydrophobic gel suspension of the FB-LDH was suggested as a transdermal controlled delivery formulation, where the suspensions were mixed with varying amounts of Eudragit(®) S-100 aqueous solution. The Frantz diffusion cell experiments using mouse full-skins showed that a lag time and steady-state flux of the drug could be controlled from 12.8h and 3.28μgcm(-2)h(-1) to less than 1h and 14.57μgcm(-2)h(-1), respectively, by increasing the mass fraction of Eudragit(®) S-100 solution in gel suspensions from 0% to 20% (w/w), respectively. Therefore, we conclude gel formulation of the FB-LDH have a potential for transdermal controlled drug delivery.
Copyright © 2013 Elsevier B.V. All rights reserved.