Background: We previously constructed a recombinant bacille Calmette-Guérin (rBCG-AE) strain that could express a fused Ag85A-ESAT-6 protein. That study suggested that the rBCG-AE strain was able to induce a higher titer of antibody and elicit a more long-lived and stronger Th1-type cellular immune responses than the parental BCG strain, the rBCG-A strain (i.e., expressing Ag85A), or the rBCG-E strain (i.e., expressing ESAT-6).
Methods: In the current study, we further investigated the strain's protective efficacy against Mycobacterium tuberculosis H37Rv infection in BALB/c mice through evaluating organ bacterial loads, lung histopathology, lung immunohistochemistry, and net weight gain or loss by using conventional BCG, rBCG-A, and rBCG-E as the controls.
Results: From the 3rd to 9th weeks after the challenge infection, the bacterial counts were significantly lower in tissues (e.g., spleen and lung tissues) in the mice immunized with rBCG-AE than in the control group, but were higher than the counts in the BCG group. The pathological damage in the lung tissues of the rBCG-AE group gradually improved from the 6th to 9th weeks after being infected with M. tuberculosis H37Rv, but the score of pathological changes in the rBCG-AE group was obviously higher than the score in the BCG group. There was no difference in the percentage of IFN-γ and iNOS positive cells in the lung tissues of the rBCG-AE and BCG groups.
Conclusion: The results suggest that rBCG-AE can not promote protective efficacy against M. tuberculosis H37Rv infection, compared to the BCG vaccine.
Keywords: Ag85A; ESAT-6; Protective efficacy; Recombinant Mycobacterium bovis bacillus Calmette-Guérin (rBCG).
Copyright © 2012. Published by Elsevier B.V.