Human NK lymphocytes are involved in antitumor immunity. The therapeutic potential of this population against cancers has stimulated their study and led to the discovery of several NK cell subsets, each of which is endowed with different immunoregulatory functions. We have previously reported that NK cell functions are profoundly altered in advanced breast cancer patients. In this study, we show that these tumor-mediated alterations also variably affect NK cell subsets. We found that in addition to the known human CD56(dim)CD16(+), CD56(bright)CD16(-), and CD56(-)CD16(+) NK cell subsets, two additional subsets, namely the CD56(bright)CD16(+) and CD56(dim)CD16(-) subsets, were increased in the peripheral blood of patients with advanced invasive breast cancers. These subsets corresponded to the main two subsets found at the tumor site. The extensive phenotype of these subsets revealed an "à la carte" pattern of expression for the various NK receptors, functional molecules, adhesion molecules, and chemokine receptors, depending on the subset. We next compared these subsets to known NK cell populations endowed with specific phenotypic characteristics, but also with functional properties. Our data show that advanced breast cancer patients have an increased proportion of more immature and noncytotoxic NK cell subsets in their peripheral blood, which might account for at least part of the low cytotoxic functions observed in these patients. They reveal a major heterogeneity and plasticity of the NK cell compartment, which are both tightly linked to the microenvironment. The identification of NK cell subsets endowed with particular functional capabilities might help monitor residual antitumor NK cell-mediated responses in breast cancer patients.