Nanoporosity is a frequently reported phenomenon in bimetallic particle ensembles used as electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells. It is generally considered a favorable characteristic, because it increases the catalytically active surface area. However, the effect of nanoporosity on the intrinsic activity and stability of a nanoparticle electrocatalyst has remained unclear. Here, we present a facile atmosphere-controlled acid leaching technique to control the formation of nanoporosity in Pt-Ni bimetallic nanoparticles. By statistical analysis of particle size, composition, nanoporosity, and atomic-scale core-shell fine structures before and after electrochemical stability test, we uncover that nanoporosity formation in particles larger than ca. 10 nm is intrinsically tied to a drastic dissolution of Ni and, as a result of this, a rapid drop in intrinsic catalytic activity during ORR testing, translating into severe catalyst performance degradation. In contrast, O2-free acid leaching enabled the suppression of nanoporosity resulting in more solid core-shell particle architectures with thin Pt-enriched shells; surprisingly, such particles maintained high intrinsic activity and improved catalytic durability under otherwise identical ORR tests. On the basis of these findings, we suggest that catalytic stability could further improve by controlling the particle size below ca. 10 nm to avoid nanoporosity. Our findings provide an explanation for the degradation of bimetallic particle ensembles and show an easy to implement pathway toward more durable fuel cell cathode catalysts.