It is a challenging task to plan a radiofrequency (RF) ablation therapy to achieve the best outcome of the treatment and avoid recurrences at the same time. A patient specific simulation in advance that takes the cooling effect of blood vessels into account is a helpful tool for radiologists, but this needs a very high accuracy and thus high computational costs. In this work, we present various methods, which improve and extend the planning of an RF ablation procedure. First, we discuss two extensions of the simulation model to obtain a higher accuracy, including the vaporization of the water in the tissue and identifying the model parameters and to analyze their uncertainty. Furthermore, we discuss an extension of the planning procedure namely the optimization of the probe placement, which optimizes the overlap of the tumor area with the estimated coagulation in order to avoid recurrences. Since the optimization is constrained by the model, we have to take into account the uncertainties in the model parameters for the optimization as well. Finally, applications of our methods to a real RF ablation case are presented.