Procollagen lysyl hydroxylase 2 is essential for hypoxia-induced breast cancer metastasis

Mol Cancer Res. 2013 May;11(5):456-66. doi: 10.1158/1541-7786.MCR-12-0629. Epub 2013 Feb 1.

Abstract

Metastasis is the leading cause of death among patients who have breast cancer. Understanding the role of the extracellular matrix (ECM) in the metastatic process may lead to the development of improved therapies to treat patients with cancer. Intratumoral hypoxia, found in the majority of breast cancers, is associated with an increased risk of metastasis and mortality. We found that in hypoxic breast cancer cells, hypoxia-inducible factor 1 (HIF-1) activates transcription of the PLOD1 and PLOD2 genes encoding procollagen lysyl hydroxylases that are required for the biogenesis of collagen, which is a major constituent of the ECM. High PLOD2 expression in breast cancer biopsies is associated with increased risk of mortality. We show that PLOD2 is critical for fibrillar collagen formation by breast cancer cells, increases tumor stiffness, and is required for metastasis to lymph nodes and lungs.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Retracted Publication

MeSH terms

  • Animals
  • Breast Neoplasms / genetics
  • Breast Neoplasms / metabolism*
  • Breast Neoplasms / pathology*
  • Cell Growth Processes / physiology
  • Cell Hypoxia / physiology*
  • Cell Line, Tumor
  • Female
  • Humans
  • Hypoxia-Inducible Factor 1, alpha Subunit / genetics
  • Hypoxia-Inducible Factor 1, alpha Subunit / metabolism
  • Immunohistochemistry
  • Mice
  • Mice, Inbred NOD
  • Mice, SCID
  • Neoplasm Metastasis
  • Procollagen / genetics
  • Procollagen / metabolism*
  • Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase / genetics
  • Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase / metabolism*

Substances

  • Hypoxia-Inducible Factor 1, alpha Subunit
  • Procollagen
  • PLOD1 protein, human
  • PLOD2 protein, human
  • Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase