A highly sensitive and specific real-time (rt) RT-PCR assay has been developed for rapid, simultaneous detection of three strains of cetacean morbillivirus (CeMV). In this assay, two PCR primers and a hydrolysis probe from a commercially available Universal Probe Library (UPL) are used to amplify a highly conserved region within the fusion protein gene. RT-PCR is carried out on the same sample using two primer sets in parallel: one set detects the more virulent strains, dolphin morbillivirus (DMV) and porpoise morbillivirus (PMV), and the other set detects the least virulent and least common strain, pilot whale morbillivirus (PWMV). Sensitivity analysis using dilute samples containing purified DMV, PMV and PWMV showed that viral RNA detection limits in this UPL RT-PCR assay were lower than in a conventional RT-PCR assay. Our method gave no amplification signal with field samples positive for viruses related and unrelated to CeMV, such as phocine distemper virus (PDV). The reliability and robustness of the UPL RT-PCR assay were verified using tissue samples previously analyzed by conventional methods, as well as a panel of clinical samples suspected of containing CeMV. Using the UPL RT-PCR assay, we were able to associate DMV with a mass stranding of striped dolphins in the Spanish Mediterranean in 2011 with greater reliability than was possible with a conventional RT-PCR method. These results suggest that this UPL RT-PCR method is more sensitive and specific than the conventional approach, and that it may be an affordable and rapid test for routine diagnosis of three CeMV strains.
Copyright © 2013 Elsevier B.V. All rights reserved.