Ektacytometry measures the shape of red blood cells under shear stress by analyzing the diffraction pattern of laser light passing through a thin layer of suspended cells. Here we model the diffraction pattern using a combination of Bessel and anomalous scattering functions, and employ a global pattern-fitting technique over nine different shear stresses to determine the separate mechanical properties of normal and non-deformable cells. This technique is capable of yielding the correct elongation index of the normal cells over a range of shear stresses even when they are mixed with as much as 50% non-deformable cells. Additionally, the relative concentrations of normal and non-deformable cells can be determined.