Emerging evidence indicates that ischemic preconditioning (IPC) induces autophagy which attenuates myocardial ischemia/reperfusion (I/R) injury. However, the precise mechanisms remain complex and unclear. The present study was to investigate which autophagy pathway was involved in the cardioprotection induced by IPC, so that we can acquire an attractive treatment way for ischemic heart disease. Adult male Sprague-Dawley (SD) rats were randomly divided into sham group, I/R group and IPC group. IPC was induced with three cycles of 5 min regional ischemia alternating with 5 min reperfusion in a heart I/R model. Samples were taken from the center of the infracted heart and examined by using the electron microscopy, the terminal deoxynucleotidyl transferase-mediated nick end-labeling (TUNEL) method, Western blotting and co-immunoprecipitation (Co-IP). A large number of autophagic vacuoles were observed in the cardiomyocytes of IPC group as compared with I/R group. LC3-II formation, an autophagy marker, was up-regulated in IPC group as compared with I/R group (P<0.05). Moreover, the interaction between Beclin 1 and Bcl-2 was significantly increased in IPC group as compared with I/R group (P<0.01). It was also found that IPC decreased I/R-induced apoptosis (P<0.01). These results suggest that IPC inhibits Beclin 1-dependent excessive autophagy in reperfusion phase and cooperates with anti-apoptosis pathway to diminish the cell death induced by the myocardial I/R injury.