aCSM: noise-free graph-based signatures to large-scale receptor-based ligand prediction

Bioinformatics. 2013 Apr 1;29(7):855-61. doi: 10.1093/bioinformatics/btt058. Epub 2013 Feb 8.

Abstract

Motivation: Receptor-ligand interactions are a central phenomenon in most biological systems. They are characterized by molecular recognition, a complex process mainly driven by physicochemical and structural properties of both receptor and ligand. Understanding and predicting these interactions are major steps towards protein ligand prediction, target identification, lead discovery and drug design.

Results: We propose a novel graph-based-binding pocket signature called aCSM, which proved to be efficient and effective in handling large-scale protein ligand prediction tasks. We compare our results with those described in the literature and demonstrate that our algorithm overcomes the competitor's techniques. Finally, we predict novel ligands for proteins from Trypanosoma cruzi, the parasite responsible for Chagas disease, and validate them in silico via a docking protocol, showing the applicability of the method in suggesting ligands for pockets in a real-world scenario.

Availability and implementation: Datasets and the source code are available at http://www.dcc.ufmg.br/∼dpires/acsm.

Supplementary information: Supplementary data are available at Bioinformatics online.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Binding Sites
  • Enzymes / chemistry
  • Enzymes / metabolism
  • Humans
  • Ligands*
  • Models, Molecular
  • Molecular Conformation
  • Molecular Docking Simulation
  • Protein Binding
  • Protein Conformation
  • Proteins / chemistry*
  • Proteins / metabolism
  • Protozoan Proteins / chemistry
  • Protozoan Proteins / metabolism
  • Trypanosoma cruzi

Substances

  • Enzymes
  • Ligands
  • Proteins
  • Protozoan Proteins