Purpose: Dravet syndrome (DS) or severe myoclonic epilepsy of infancy is an intractable epileptic encephalopathy of early childhood that is caused by a mutation in the SCN1A gene in most patients. The aim of this study was to identify a syndrome-specific epileptic network underlying interictal epileptiform discharges (IEDs) in patients with DS.
Methods: Ten patients with the diagnosis of DS associated with mutations in the SCN1A gene were investigated using simultaneous recording of electroencephalography and functional magnetic resonance imaging ((EEG-fMRI). Time series of IEDs were used as regressors for the statistical fMRI analysis.
Key findings: In nine patients with DS, individual blood oxygenation level-dependent (BOLD) signal changes were seen. In three patients the thalamus was involved. Furthermore, regions of the default mode network were activated in seven patients. However, a common activation pattern associated with IEDs could not be detected.
Significance: The study demonstrates that, despite a common genetic etiology in DS, different neuronal networks underlie the individual IEDs.
Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.