In recent years, near-infrared (NIR) hyperspectral imaging has proved its suitability for quality and safety control in the cereal sector by allowing spectroscopic images to be collected at single-kernel level, which is of great interest to cereal control laboratories. Contaminants in cereals include, inter alia, impurities such as straw, grains from other crops, and insects, as well as undesirable substances such as ergot (sclerotium of Claviceps purpurea). For the cereal sector, the presence of ergot creates a high toxicity risk for animals and humans because of its alkaloid content. A study was undertaken, in which a complete procedure for detecting ergot bodies in cereals was developed, based on their NIR spectral characteristics. These were used to build relevant decision rules based on chemometric tools and on the morphological information obtained from the NIR images. The study sought to transfer this procedure from a pilot online NIR hyperspectral imaging system at laboratory level to a NIR hyperspectral imaging system at industrial level and to validate the latter. All the analyses performed showed that the results obtained using both NIR hyperspectral imaging cameras were quite stable and repeatable. In addition, a correlation higher than 0.94 was obtained between the predicted values obtained by NIR hyperspectral imaging and those supplied by the stereo-microscopic method which is the reference method. The validation of the transferred protocol on blind samples showed that the method could identify and quantify ergot contamination, demonstrating the transferability of the method. These results were obtained on samples with an ergot concentration of 0.02% which is less than the EC limit for cereals (intervention grains) destined for humans fixed at 0.05%.