Activation of host innate antiviral responses are mediated by retinoic-acid inducible gene I (RIG-I)-like receptors, RIG-I and melanoma differentiation-associated gene 5, and TLRs 3, 7, 8 and 9, recognising different types of viral nucleic acids. The major components of the RIG-I- and TLR pathways have putatively been identified, but previously unrecognised kinases may contribute to virus infection-induced activation of the IFN response. Here, we screened a human kinase cDNA library, termed the kinome, using an IFN-λ1 promoter-driven luciferase reporter assay in HEK293 cells during Sendai virus infection. Of the 568 kinases analysed, nearly 50 enhanced IFN-λ1 gene expression at least twofold in response to Sendai virus infection. The best activators were FYN (FYN oncogene related to SRC, FGR, YES), serine/threonine kinase 24, activin A receptor type 1 and SRPK1 (SFRS protein kinase 1). These kinases enhanced RIG-I-dependent IFN-λ1 promoter activation via IFN-stimulated response and NF-κB elements, as confirmed using mutant IFN-λ1 promoter constructs. FYN and SRPK1 enhanced IFN-λ1 and CXCL10 protein production via the RIG-I pathway, and stimulated RIG-I and MyD88-dependent phosphorylation of IRF3 and IRF7 transcription factors, respectively. We conclude that several previously unrecognised kinases, particularly FYN and SRPK1, positively regulate IFN-λ1 and similarly regulated cytokine and chemokine genes during viral infection.
Keywords: Viral infection; innate immunity; interferon regulatory factor; kinase signalling; type III interferon.