Our group recently described a population of antigen-presenting cells that appear to be critical in psoriasis pathogenesis, termed inflammatory myeloid dendritic cells (CD11c(+)/blood dendritic cell (DC) antigen 1(-)). Triggering receptor expressed on myeloid cells type-1 (TREM-1) signaling was a major canonical pathway in the published transcriptome of these cells. TREM-1 is a member of the Ig superfamily, active through the DAP12 signaling pathway, with an unknown ligand. Activation through TREM-1 induces inflammatory cytokines, including IL-8, MCP/CCL2, and tumor necrosis factor. We now show that TREM-1 was expressed in the skin of healthy and psoriatic patients, and there was increased soluble TREM-1 in the circulation of psoriasis patients. In psoriasis lesions, TREM-1 was colocalized with DCs, as well as CD31(+) endothelial cells. TREM-1 expression was reduced with successful narrow band UVB (NB-UVB), etanercept, and anti-IL-17 treatments. An in vitro model of peptidoglycan-activated monocytes as inflammatory myeloid DCs was developed to study TREM-1 blockade, and treatment with a TREM-1 blocking chimera decreased allogeneic T-helper type 17 cell activation, as well as IL-17 production. Furthermore, TREM-1 blockade of ex vivo psoriatic DCs in an allogeneic mixed leukocyte reaction also showed a decrease in IL-17. Together, these data suggest that the TREM-1 signaling pathway may be a previously unidentified therapeutic target to prevent the effects of inflammatory myeloid DCs in psoriasis.