Purpose: We examined whether the novel 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate, compound 2, might be an effective treatment for malignant pleural mesothelioma (MPM), reflecting its selective membrane transport by the proton-coupled folate transport (PCFT) over the reduced folate carrier (RFC).
Methods: HeLa sublines expressing exclusively PCFT (R1-11-PCFT4) or RFC (R1-11-RFC6) and H2452 MPM cells were assayed for transport with [(3)H]compound 2. [(3)H]Polyglutamate metabolites of compound 2 were measured in R1-11-PCFT4 and H2452 cells. In vitro cell proliferation assays and colony formation assays were performed. Inhibition of glycinamide ribonucleotide formyltransferase (GARFTase) was assayed by nucleoside protection assays and in situ GARFTase assays with [(14)C]glycine. In vivo efficacy was established with early- and advanced-stage H2452 xenografts in severe-combined immunodeficient (SCID) mice administered intravenous compound 2.
Results: [(3)H]Compound 2 was selectively transported by PCFT and was metabolized to polyglutamates. Compound 2 selectively inhibited proliferation of R1-11-PCFT4 cells over R1-11-RFC6 cells. H2452 human MPM cells were sensitive to the antiproliferative effects of compound 2. By colony-forming assays with H2452 cells, compound 2 was cytotoxic. Compound 2 inhibited GARFTase in de novo purine biosynthesis. In vivo efficacy was confirmed toward early- and advanced-stage H2452 xenografts in SCID mice administered compound 2.
Conclusions: Our results demonstrate potent antitumor efficacy of compound 2 toward H2452 MPM cells in vitro and in vivo, reflecting its efficient membrane transport by PCFT, synthesis of polyglutamates, and inhibition of GARFTase. Selectivity for non-RFC cellular uptake processes by tumor-targeted antifolates such as compound 2 presents an exciting new opportunity for treating solid tumors.