IL-1 is a key inflammatory and immune mediator in many diseases, including dry-eye disease, and its inhibition is clinically efficacious in rheumatoid arthritis and cryopyrin-associated periodic syndromes. To treat ocular surface disease with a topical biotherapeutic, the uniqueness of the site necessitates consideration of the agent's size, target location, binding kinetics, and thermal stability. Here we chimerized two IL-1 receptor ligands, IL-1β and IL-1Ra, to create an optimized receptor antagonist, EBI-005, for topical ocular administration. EBI-005 binds its target, IL-1R1, 85-fold more tightly than IL-1Ra, and this increase translates to an ∼100-fold increase in potency in vivo. EBI-005 preserves the affinity bias of IL-1Ra for IL-1R1 over the decoy receptor (IL-1R2), and, surprisingly, is also more thermally stable than either parental molecule. This rationally designed antagonist represents a unique approach to therapeutic design that can potentially be exploited for other β-trefoil family proteins in the IL-1 and FGF families.