Synthesis and stress relaxation of ZnO/Al-doped ZnO core-shell nanowires

Nanoscale. 2013 Apr 7;5(7):2857-63. doi: 10.1039/c3nr33584d.

Abstract

Doping nanostructures is an effective method to tune their electrical and photoelectric properties. Taking ZnO nanowires (NWs) as a model system, we demonstrate that atomic layer deposition (ALD) can be adopted for the realization of a doping process by the homo-epitaxial growth of a doped shell on the NW core. The Al-doped ZnO NWs have a layered superlattice structure with dopants mainly occupying the interstitial positions. After annealing, Al(3+) ions diffuse into the ZnO matrix and occupy substitutional locations, which is desirable for dopant activation. The stress accumulated during epitaxial growth is relaxed by the nucleation of dislocations, dislocation dipoles and anti-phase boundaries. We note that the proposed method can be easily adopted for doping different types of nanostructures, and fabricating superlattices and multiple quantum wells on NWs in a controllable way.

Publication types

  • Research Support, Non-U.S. Gov't